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Abstract

An anisotropic Lagrangian approach is used to investigate the in¯uence of a mean ¯uid velocity
gradient on the motion and on the dispersion of heavy particles suspended in a stationary homogeneous
turbulent gas ¯ow. The problem of consistency of the correlation matrices used in ®rst-order stochastic
processes is put forward. The accuracy of the method is ®rst checked by comparing the numerical
predictions with available experimental results in uniform ¯ow. A second validation test is carried out
by comparison with dispersion measurements in a horizontal shear ¯ow. Numerical predictions are then
provided in the case of a vertical upward turbulent shear ¯ow, the gravity force ®eld implying a non-
zero mean drift velocity between ¯uid and particles. The transverse particle dispersion is found to be
slightly reduced by the presence of a uniform shear. The streamwise particle turbulent intensity is
enhanced above the level predicted without shear, whereas, in the direction normal to the ¯ow, the
¯uctuating velocity of particles are found to be una�ected by the presence of shear. The e�ect of the lift
force due to the mean shear is found to be negligible, except for the mean transverse deviation, which is
found however not to be caused only by the lift. The presented numerical results, which con®rm and
extend the theoretical analysis of others, may explain some experimental observations reported in the
literature. # 2000 Elsevier Science Ltd. All rights reserved.
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1. Introduction

Flows of solid particles or droplets suspended in a turbulent ¯uid are encountered in many
practical situations such as pneumatic conveying, sediment transport, pollution or
combustion. In such kinds of ¯ows, the interactions between the particles and the ¯uid
involve two important mechanisms, which are the modi®cation of ¯uid turbulence by the
presence of particles (Hetsroni, 1989; Yarin and Hetsroni; 1994a, b, Crowe et al., 1996),
which will not be discussed here, and the particle motion due to ¯uid turbulent ¯uctuations.
As far as the latter mechanism is concerned, it may be very instructive to investigate the
dispersion of particles in a turbulent shear ¯ow, which is a problem of great importance in
the near-wall region of con®ned suspension ¯ows. Several authors, who carried out
experiments in boundary layer ¯ows (Rogers and Eaton, 1990) or in pipe ¯ows (Soo et al.,
1960; Tsuji and Morikawa, 1982), reported that the streamwise ¯uctuating velocity of
suspended particles may exceed the ¯uid r.m.s. velocity. A theoretical analysis of such an
e�ect of a mean ¯uid velocity gradient on the streamwise velocity variance of a small
particle suspended in a turbulent ¯ow was proposed by Liljegren (1993). In her study, no
body force was considered, and the investigation was restricted to the case of small particles
whose drag force obeys the Stokes' law. Liljegren showed that the magnitude of the
streamwise r.m.s. velocity of small solid particles suspended in a gas ¯ow is increased by the
presence of the mean shear, whereas the transverse particle turbulent intensity is not
signi®cantly a�ected.

The present paper is devoted to the study of the in¯uence of shear on the particle
turbulent response and dispersion in a range of ®nite particle Reynolds numbers, and in
the presence of the gravitational body force ®eld. The e�ect of the shear induced lift
force, which may possibly have a signi®cant in¯uence in the near-wall regions, is also
studied. Results are obtained by simulating, by means of a Lagrangian technique for
anisotropic turbulence, the ¯uctuating motion and the dispersion of discrete particles in a
vertical upward air ¯ow, so that the gravity force acts in the counter-streamwise direction.
The turbulence is assumed to be stationary and homogeneous, and the dispersed phase
concentration is supposed low enough for the ¯uid ¯ow not to be altered by the presence
of the particles. Before investigating the e�ect of the mean ¯uid velocity gradient, some
results concerned with the transverse particle dispersion in a turbulent uniform ¯ow,
without taking any shear rate into account, are presented and compared with Snyder and
Lumley's experiments (Snyder and Lumley, 1971), in order to assess the accuracy of the
numerical code. Results concerning the streamwise particle dispersion in the same
conditions are also given. Dispersion predictions in a horizontal shear ¯ow are then
compared with recently available measurements performed by Huang and Stock (1997), in
order to check the capabilities of the proposed simulation method in the presence of
shear. Finally, the e�ect of shear is investigated in a simulated vertical homogeneous
shear ¯ow, corresponding to the experimental data of Champagne et al. (1970). Results
are given for the streamwise, transverse and cross dispersions, as well as for particle
turbulent intensities, and are discussed with relevance to the theoretical analysis of
Liljegren (1993).
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2. Particle motion in turbulence: governing equations

The three-dimensional ¯uctuating motion of spherical particles is investigated here by the use
of a Lagrangian tracking technique, which lies on the simultaneous computation of a discrete
particle trajectory and of the neighbouring ¯uid particle path, and allows the velocity
¯uctuations to be predicted by taking into account the space and time correlations. This
technique will be described in the next section, after the equations governing the particle
motion have been presented. In order to study the motion of a single particle, the ¯uid and
particle instantaneous velocity vectors are split into a mean velocity vector and a ¯uctuating
velocity vector:

Vp � Vp � vp, Vf � Vf � vf , �1�
The only non-vanishing component of the mean ¯uid and particle velocities are along the x1
(vertical) co-ordinate direction. In case of linear shear, the undisturbed mean ¯uid velocity
depends on the transverse co-ordinate x2 according to:

Vf1�x2� � Vf10
� wx2, �2�

where Vf10
is the value of the mean ¯uid velocity at x2 � 0 (particle injection point), and w is

the mean shear rate, which is assumed constant. The instantaneous and mean particle
Reynolds numbers, Rep and Rep , based on the instantaneous and mean relative velocity,
respectively, are de®ned by

Rep � jVf ÿ Vpjdn and Rep � jVf ÿ Vpjdn �3�

where n is the ¯uid kinematic viscosity and d denotes the particle diameter. Besides these two
particle Reynolds numbers, we introduce a shear Reynolds number, de®ned as follows:

Rew � jwjd
2

n
, �4�

The well-known Basset±Boussinesq±Oseen equation, which governs the non-stationary motion
of a rigid spherical particle at very small particle Reynolds numbers, was ®rst extended by
Tchen (1947), then modi®ed by Corssin and Lumley (1956) and corrected by Maxey and Riley
(1983) and Gatignol (1983), who included, in particular, the appropriate Faxen correction for
particle motion in a nonuniform ¯ow. The extension proposed by Odar (1966) for higher
particle Reynolds numbers has been proved to be incorrect by Mei and Adrian (1992), who
derived a modi®ed expression of the kernel of the history force integral, yielding accurate
results up to Rep � 100.
However, in case of a solid particle or a droplet moving in a gas, the particle density is

much larger than the ¯uid density, so that the history force, the added mass force and the
displaced mass force can be shown to be negligible as compared to the quasi-stationary drag
force. More precisely, the added and displaced mass forces are found to be O� u 0Vr

d 2

nTL
� compared

to the drag force, where TL is the Lagrangian integral time scale of the turbulence, u 0 is an
estimate of the ¯uid r.m.s. velocity, and Vr is the relative velocity of the particle with respect to
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the ¯uid. In the examples considered in the present work, the ratio u 0
Vr

d 2

nTL
ranges from 10ÿ2 to

10ÿ4. Nevertheless, such unsteady forces may be of the same order of magnitude than the shear
induced lift force for small particle Reynolds numbers, as shown by Maxey and Riley (1983).
Since we will be studying the in¯uence of the lift force induced by the mean shear, it is thus
necessary to examine the magnitude of the unsteady forces compared to the quasi-stationary
transverse force due to the mean ¯uid velocity gradient.
An expression of the shear lift force on a sphere at small Reynolds number was ®rst

theoretically derived by Sa�man (1965,1968), whose result has been extended by MacLaughlin
(1991). Later, the lift has been numerically predicted by Dandy and Dwyer (1990), and
correlated by Mei (1992), for particle Reynolds numbers ranging up to 100. It must be pointed
out that such a lift force is related not only to the mean shear, but also to the mean relative
velocity between ¯uid and particle, Vf1 ÿ Vp1 , which is not zero here because of the external
body force ®eld. It is assumed that there is no lift force due to the rotating motion of the
particle.
By using the lift expressions of Mei (1992) (see Appendix A), it can be shown that the ratio

of the added mass force to the mean lift force is O�d=TL
�����nwp � in the range of particle Reynolds

numbers investigated herein �0:05 < Rep < 2:6; 0 < Rew < 0:01). Since the ratio d=�TL
�����nwp � lies

in the range 10ÿ2 to 10ÿ1, the lift force due to the mean velocity gradient may possibly have a
non negligible e�ect. Furthermore, the added mass force has a zero mean value, contrary to
the shear lift force, which has a non-vanishing mean value, related to the mean velocity
gradient and to the mean slip velocity. Owing to the assumption of constant shear rate, the
mean values of the displaced mass term and of the Faxen term in the history force are also
zero. Following the same argument as for the added mass force, such unsteady forces will
therefore also be neglected compared to the mean lift force, which will be taken into account in
the calculations, in order to examine its in¯uence.
Under such conditions, i.e., only the gravity force, the quasi-stationary drag force and the

quasi-stationary shear lift force are considered, the instantaneous equations of motion of a
particle, with mass m, in a Cartesian co-ordinate system Ox1x2x3, at time t, are:

m
dVp1

dt
� pd 2

4

1

2
rf jVf ÿ Vpj

ÿ
Vf1 ÿ Vp1

�
CD ÿmg1

m
dVp2

dt
� pd 2

4

1

2
rf

�
jVf ÿ Vpj

ÿ
Vf2 ÿ Vp2

�
CD �

ÿ
Vf1 ÿ Vp1

�2
CL

�
ÿmg2

m
dVp3

dt
� pd 2

4

1

2
rf jVf ÿ Vpj

ÿ
Vf3 ÿ Vp3

�
CD ÿmg3 �5�

where rf is the ¯uid density, gi are the gravitational acceleration components, and CD and CL

denote the drag and lift coe�cients, respectively. The best estimation of CD in a large range of
Reynolds numbers is provided by the formula proposed by Morsi and Alexander (1972), which
will therefore be used herein for the calculation of the quasi-stationary drag in terms of the
instantaneous particle Reynolds number. The lift coe�cient CL will be predicted by the above
mentioned correlation of Mei (1992) (the drag and lift coe�cient expressions are given in
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Appendix A). It must be pointed out that Mei's correlation assumes that the particle and the
¯uid are moving in the same direction, which is not strictly the case in the present problem.
That is why the lift force, which is referred to the streamwise relative velocity Vf1 ÿ Vp1 , is
supposed to act only in the x2-direction, keeping in mind that the only way to express such a
shear induced transverse force is an approximate way, due to the lack of available information
concerning the exact form of the instantaneous lift.
Eq. (5) can be rewritten as:

dVpi

dt
�

d
�
Vpi � npi

�
dt

� 3

4

rf

rp

�
n
d 2

CDRep

ÿ
Vf i ÿ Vpi

�� di2
d
CL

ÿ
Vf1 ÿ Vp1

�2�ÿ gi �6�

where rp denotes the particle material density, and dij is the Kronecker symbol.
By solving Eq. (6) for a given ¯uid instantaneous velocity, the instantaneous particle velocity

can be obtained. Calculation has been performed by means of a Lagrangian tracking method,
which is described in Section 3.

3. Outlines of the Lagrangian tracking method

In Lagrangian methods, particles are individually tracked through solving the particle
equation of motion, and a signi®cant number of particle trajectories are calculated. In order to
take into consideration the e�ect of ¯uid turbulence on the particle motion, the instantaneous
velocity ¯uctuations of the ¯uid must be known at each point of the discrete particle trajectory.
Lagrangian approaches were ®rst proposed by Peskin and Kau (1976) and Gosman and
Ioannides (1981), who introduced the so-called eddy interaction models. Gouesbet et al.
(1982,1984) studied the dispersion of particles using Frenkiel functions to approximate the
Lagrangian time correlation of the ¯uid turbulence. In the method of Ormancey and Martinon
(1984), the ¯uid ¯uctuating velocity at the discrete particle location is generated in taking the
¯uid velocity longitudinal and transverse correlations into account. The model of Burnage and
Moon (1990) lies on the space±time random distributions of the turbulent scales, the mean
values of which are the local Lagrangian time scale and Eulerian length scale. Lu et al. (1993)
proposed a Lagrangian simulation method in three-dimensional turbulent suspension ¯ows.
However, all these models assume that the ¯uid turbulence is isotropic, as is the case in the
comprehensive theoretical analysis on particle dispersion published by Wang and Stock (1993).
Recently, Graham (1998) proposed an analytical comparison of Lagrangian particle dispersion
models in isotropic turbulence, including the particle-cloud approaches like the stochastic±
probabilistic model developed by Chen and Pereira (1997). The ®rst Lagrangian methods for
anisotropic turbulence were presented by Berlemont et al. (1990) and Zhou and Leschziner
(1991), and an overview of the techniques of modelling turbulent particle dispersion in complex
¯ows was recently given by Shirolkar et al. (1996). The Lagrangian technique used in the
present paper follows the principles of the approach proposed by Burry and Bergeles (1993)
[hereafter denoted BB], also applied later by Zhou and Leschziner (1996) [ZL], which lies on
two consecutive ®rst-order autoregressive processes to predict the ¯uid instantaneous velocity
at the discrete particle location.
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In this technique, the discrete particle and the corresponding ¯uid particle start out from the
same position xf�tÿ Dt� � xp�tÿ Dt� at time level tÿ Dt. After one time step Dt, they arrive at
xp�t� and xf�t�, respectively. The new discrete particle velocity Vp�xp�t�,t� and position xp�t� are
obtained through numerical integration of the particle equation of motion [6] by means of a
Runge±Kutta method. In order that the new discrete particle position xp�t� can be used as the
starting point of both kinds of particles for the next time step, it is necessary to predict the
¯uid instantaneous velocity at time t and position xp�t�. This velocity Vf�xp�t�,t� is expressed in
terms of the velocity Vf�xf�t�,t� in taking into account a given two-point velocity correlation
tensor, whereas Vf�xf�t�,t� is connected to the known velocity Vf�xf�tÿ Dt�,tÿ Dt� throughout
the Lagrangian time correlation tensor. The corresponding procedure will be described in
Sections 3.1 and 3.2.
Although our model is not basically di�erent from the models presented by BB or ZL, it

must be mentioned, however, that these authors used Frenkiel correlations, which are not
consistent with the principles of generating the ¯uid instantaneous velocity by means of ®rst-
order time series model: it will be theoretically proved, in Section 3.3, that only exponential
correlation matrices can be used in such autoregressive processes. A way of building
exponential correlation matrices in a shear ¯ow is proposed in Section 3.4. Contrary to BB and
ZL, the original technique developed by Berlemont et al. (1990) is theoretically correct in what
concerns the ¯uid particle tracking, but it is based on very large correlation matrices, and
practical application is restricted to two-dimensional ¯ows. Moreover, the prediction of the
¯uid instantaneous velocity at the solid particle location, Vf�xp�t�,t�, su�ers from the same
drawbacks as in BB or ZL, and the proposed spatial cross-correlations do not amount to the
correct Reynolds stresses when the distance is zero.

3.1. Prediction of the instantaneous ¯uid velocity Vf�x f�t�,t�

Following ZL or BB, the time correlation is introduced to the method in expressing the ¯uid
¯uctuating velocity at time t and position xf�t�, denoted by vf�xf�t�,t�, as

vf�xf�t�,t� � H�t,Dt�vf

ÿ
xf�tÿ Dt�,tÿ Dt

�
� d�t,Dt� �7�

where H is a matrix which takes into consideration all the e�ects from previous time steps, and
d is a random vector obeying a Gaussian conditional PDF, which takes into account the
randomness due to turbulence as well as the ¯ow anisotropy. Multiplying Eq. (7) by the
transpose vT

f �xf�tÿ Dt�,tÿ Dt� and taking the expectations of each side in order to get the
autocovariance matrix of vf , we can express the matrix H in terms of the Lagrangian
correlation coe�cients Rij�t,Dt�, de®ned by (no summation on i or j ):

vf i�xf�t�,t�nf j

ÿ
xf�tÿ Dt�,tÿ Dt

�
� Rij�t,Dt�u 0itu 0jtÿDt �8�

where u 0it denotes the r.m.s. velocity
��������������������
v2f i�xf�t�,t�

q
. Note that u 0it and Rij�t,Dt� depend on t in case

of non-homogeneous turbulence, even if stationary turbulence is assumed. Denoting by faij g a
matrix whose elements are the quantities aij, we obtain:
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H�t,Dt� �
n
Rij�t,Dt�u 0itu 0jtÿDt

o n
Rij�t,0�u 0itÿDtu 0jtÿDt

oÿ1 �9�

Similarly, the covariance matrix of vector d can be shown to obey (see ZL for analytical
details):

d�t,Dt�dT�t,Dt� �
n
didj

o
�t,Dt�
�
n
Rij�t,0�u 0itu 0jt

o
ÿH�t,Dt�

n
Rij�t,Dt�u 0itÿDtu 0jt

o
�10�

which makes it possible to generate the components of d using the Cholesky algorithm as
previously done by Berlemont et al. (1990) and ZL. To summarise, the process described by
Eq. (7) can be used to generate the turbulent velocity ¯uctuations along the path of any ¯uid
particle, provided that the Lagrangian time correlation tensor is known for any Dt (therefore
including the knowledge of Rij�t,0�, which is the Reynolds stress tensor at point xf�t�). Further
requirements concerning the time correlation tensor will be addressed in Section 3.3.

3.2. Prediction of the instantaneous ¯uid velocity at point xp�t�

Following the suggestion by BB, a similar concept is used for the prediction of the ¯uid
¯uctuating velocity at the discrete particle location, according to:

vf

ÿ
xp�t�,t

� � K
ÿ
xp�t�,x

�
vf�xf�t�,t� � e

ÿ
xp�t�,x

� �11�
where x � xp ÿ xf , the separation vector between the two positions, is taken into account in
expressing the matrix K in terms of the spatial correlations, and e is a vector representing the
randomness due to turbulence. In order that the spatial correlations may be expressed in terms
of the scalar quantity Dr � jxj, it is convenient to write Eq. (11) in a local co-ordinate system
de®ned in such a manner that vf1 is collinear to the vector xp ÿ xf �vfa being the a-component
of the ¯uid ¯uctuating velocity in such a reference frame). Handling Eq. (11) in the same
manner as Eq. (7) above leads to the following expression of the matrix K:

K
ÿ
xp,Dr

� � nQab
ÿ
xp,Dr

�
u 0ap

u 0bf

o n
Qab

ÿ
xp,0

�
u 0af

u 0bf

oÿ1 �12�

where u 0ap
�

���������������������
v2fa�xp�t�,t�

q
and u 0af

�
��������������������
v2fa�xf�t�,t�

q
, the components Qab of the two-point velocity

correlation tensor being de®ned by

vfa

ÿ
xp�t�,t

�
vfb�xf�t�,t� � Qab

ÿ
xp,Dr

�
u 0ap

u 0bf
�13�

As for the vector d in Section 3.1, the vector e can be generated by means of the Cholesky
algorithm after its covariance matrix has been calculated by�

eaeb
	
�xp,Dr ��

n
Qab

ÿ
xp,0

�
u 0ap

u 0bp

o
ÿK

ÿ
xp,Dr

�n
Qab

ÿ
xp,Dr

�
u 0af

u 0bp

o
�14�

Here again, the main di�culty lies in the appropriate assessment of the correlation tensor in
order to enable a new ¯uid ¯uctuating velocity to be properly generated at location xp, so that
the whole process can be repeated using xp as the starting point for the new time step.
Although the tensor Qab may generally be di�erent from the ¯uid Eulerian spatial correlation
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tensor, it has been recently shown by Ushijima and Perkins (1998) that the two-point
correlation tensor de®ned by Eq. (13) can be approached by the ¯uid Eulerian spatial
correlation tensor when the e�ect of gravity is present. In the following subsection, we describe
the conditions that have to be ful®lled by the correlation matrices for the particle tracking
process to be consistent.

3.3. Consistency requirements for the correlation tensors

As a matter of fact, ®rst-order autoregressive processes involved in Eqs. (7) and (11) are
discrete approximations of continuous processes represented by a ®rst-order stochastic
di�erential equation (see Harvey, 1989). In case of homogeneous isotropic turbulence, where
the three components of the velocity can be treated independently, the di�erential equation
associated with Eq. (7) takes the form of the well-known Langevin equation. Therefore, using
Eq. (7) in such an one-dimensional case comes down to assume that the velocity of a ¯uid
particle obeys the Langevin equation, which is known to lead to an exponentially decaying
autocorrelation function (Sawford, 1991; Shirolkar et al., 1996). More generally, for any
vectorial autoregressive process obeying the form of Eqs. (7) or (11), the matrix H (or K) must
meet some requirements in order that the coherent nature of the turbulent eddies be correctly
taken into account. Let us examine the consequences of describing the time evolution of the
¯uctuating velocity vector by Eq. (7), under the assumption of stationary Lagrangian statistics
(which is the case herein since we are concerned with steady homogeneous turbulence).
Multiplying each side of this equation by vT

f �xf�tÿ t�,tÿ t�, and denoting by G�t� the
Lagrangian autocovariance matrix obtained through averaging (i.e. G�t� � fvfi�t�vfj�tÿ t�g), we
get:

G�t� � H�Dt�G�tÿ Dt� 8Dt, t > 0 �15�
and, similarly:

G�tÿ Dt� � H�Dt 0 �G�tÿ Dtÿ Dt 0 � 8Dt,Dt 0, t > Dt �16�
so that we must have:

G�t� � H�Dt�H�Dt 0 �G�tÿ Dtÿ Dt 0 � 8Dt, Dt 0 �17�
and, according to Eq. (15) in replacing Dt by Dt� Dt 0:

G�t� � H�Dt� Dt 0 �G�tÿ Dtÿ Dt 0 � 8Dt, Dt 0 �18�
It is therefore required, for consistency of the stochastic process, that the matrix H satis®es:

H�Dt�H�Dt 0 � � H�Dt� Dt 0 � 8Dt, Dt 0 �19�
a condition which can only be ful®lled by the exponential matrical form H�Dt� � eÿADt, where
A is a positive-de®nite matrix in order that the components of H tend to zero for t41 (it
may be noticed that, for constant Dt, the same result can be obtained in a more
straightforward manner by putting t � nDt in Eq. (15) and substituting repeatedly for lagged
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values of G�t�, leading to H�nDt� � �H�Dt��n, thus showing the necessary exponential form of
the matrix H). Hence, according to Eq. (15) written for Dt � t, the only consistent form of the
autocovariance matrix is:

G�t� � eÿAtG�0� �20�
where G�0� is the Reynolds stress tensor.
This means that, whatever the autocovariance matrix is used to calculate the matrix H

according to Eq. (9), the ®rst order time series will unavoidably generate an exponential
autocovariance matrix. Such a result, which is in accordance with the above-mentioned
exponentially decaying autocorrelation function in case of homogeneous isotropic turbulence,
is very important because using any other form of correlation functions in such ®rst-order
autoregressive processes (as was done, for example, by ZL or BB who used Frenkiel functions)
may lead to spurious results after a large number of time steps. In order to illustrate the result
of using arbitrary given correlation functions, let us consider the one-dimensional case of
stationary homogeneous isotropic turbulence, where the method of generating vf�t� according
to Eq. (7) would take the simple scalar form:

vf�t� � H�Dt�vf�tÿ Dt� � d�t� �21�
Here the matrix H is replaced by the scalar H, whose expression in terms of the initially given
correlation function R�Dt� is merely H�Dt� � R�Dt� , according to Eq. (9). Using a time step
Dt0, multiplying each side of Eq. (21) by vf�tÿ nDt0� and averaging leads to the autocovariance
G�nDt0�:

G�nDt0� � vf�t�vf�tÿ nDt0� � R�Dt0�vf�tÿ Dt0�vf�tÿ nDt0� � R�Dt0�G
ÿ�nÿ 1�Dt0

�
�22�

This relationship can be written for any nr1, so that:

G�nDt0� � R�Dt0�G
ÿ�nÿ 1�Dt0

�
� �R�Dt0��2G

ÿ�nÿ 2�Dt0
�
� � � � � �R�Dt0��nG�0� �23�

In terms of the time lag t � nDt0, we can therefore write:

vf�t�vf�tÿ t� � G�t� � v2f �R�Dt0��t=Dt0� v2f exp

�
t
Dt0

ln R�Dt0�
�

�24�

thus showing that the autocorrelation generated by the stochastic process is an exponential
function whatever the form of the initially given function R�Dt�. Except if R�Dt� � eÿDt=T, the
resulting autocorrelation will depend on the time step Dt0. Using, for example, the Frenkiel
function R�Dt� � exp�ÿDt=2T �cos�Dt=2T � (whose integral time scale is T ) for the generation of
¯uctuating velocities according to Eq. (21) will yield an exponential autocorrelation obeying

vf�t�vf�tÿ t�
v2f

� exp

(
ÿ t

Dt0

�
Dt0
2T
ÿ ln

�
cos

Dt0
2T

��)
�25�

or, for small Dt0:
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vf�t�vf�tÿ t�
v2f

1exp

�
ÿ t

2T

�
1� Dt0

4T

��
�26�

which shows that the e�ective integral time scale of the generated velocity ¯uctuations will be
T �1 2T

1�Dt0=4T12T instead of the desired value which is T!
Of course, any form of explicitly given correlation functions, like Frenkiel-type functions

(with one or several negative loops) or the form suggested by Sawford (1991), without negative
loop (but exhibiting the correct parabolic behaviour at the origin), can be generated by means
of stochastic processes, but such processes are not ®rst-order ones, which means that the
velocity at time t depends on more lagged values. Consequently, it is not possible to use them
in the typical BB approach, because it would be necessary to know (for a second-order process,
for example) the velocity of the same ¯uid particle at tÿ 2Dt and tÿ Dt (or, equivalently, the
velocity and the acceleration at time tÿ Dt� to calculate its velocity at time t, which is not the
case for the reason that the spatial transfer makes the tracked ¯uid particle to change at each
time step.
In a similar manner, the process used in Eq. (11) to express the velocity vf�xp�t�� as a

function of vf�xf�t�� can be shown to be consistent with an exponential matrix for the two-
point velocity covariance tensor. The way such correlation matrices are built is explained in
Section 3.4.

3.4. Correlation matrices used herein for homogeneous shear ¯ow

As we are interested in predicting particle dispersion in homogeneous or quasi-homogeneous
shear ¯ows, we consider the following Reynolds stress tensor:

G�0� �

8>>>>><>>>>>:
v2f1 C12

������
v2f1

q ������
v2f2

q
0

C12

������
v2f1

q ������
v2f2

q
v2f2 0

0 0 v2f3

9>>>>>=>>>>>;
�27�

where C12 is the constant one-point correlation coe�cient de®ned by vf1vf2 � C12

������
v2f1

q ������
v2f2

q
,

whose value lies between ÿ0.4 and ÿ0.5 according to available experimental data in such
homogeneous shear ¯ows. In order to build the matrix H�t�, it is necessary to prescribe some
form of the matrix A. From the particular form of the Reynolds stress tensor given by (27), it
may be suggested, among various other solutions, trying to ®nd the exponential matrix H�t� by
using a matrix A exhibiting the same simple pattern. We are therefore led to the following
expression, which gives the most general form of such a matrix in terms of its eigenvalues
tÿ11 ,tÿ12 ,tÿ13 (which will be shown later to be connected to the Lagrangian integral time scales),
where a, b are adjustable parameters:
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A �

8>>>><>>>>:
atÿ11 � �1ÿ a�tÿ12 b

ÿ
tÿ11 ÿ tÿ12

�
0

a�1ÿ a�
b

ÿ
tÿ11 ÿ tÿ12

� �1ÿ a�tÿ11 � atÿ12 0

0 0 tÿ13

9>>>>=>>>>; �28�

The exponential matrix H � eÿAt can then be built by H � LeÿA�tLÿ1, where A� � Lÿ1AL is
the diagonal form of the matrix A, so that eÿA�t is the diagonal matrix whose elements are
eÿt=ti . By means of Eqs. (20) and (27), and using the de®nition of the correlation coe�cients
as given by Eq. (8), the non-zero components of the corresponding correlation tensor can be
shown to be:

R11�t� � �a� bmC12�eÿt=t1 � �1ÿ aÿ bmC12�eÿt=t2

R21�t� � 1ÿ a

bm
�a� bmC12�eÿt=t1 ÿ a

bm
�1ÿ aÿ bmC12�eÿt=t2

R12�t� � �bm� aC12�eÿt=t1 ÿ
ÿ
bmÿ �1ÿ a�C12

�
eÿt=t2

R22�t� � 1ÿ a

bm
�bm� aC12�eÿt=t1 � a

bm

ÿ
bmÿ �1ÿ a�C12

�
eÿt=t2

R33�t� � eÿt=t3

�29�

where m �
������
v2f2

q
=
������
v2f1

q
. From symmetry requirements, i.e. R12 � R21, we must have:

bm�bm� aC12� � �1ÿ a��a� bmC12� �30�
so that there is ®nally only one free parameter in the formulation of the ¯uid Lagrangian
correlation tensor according to Eq. (29). Acceptable values of a lie in the range which leads to
real values of bm from Eq. (30), namely ÿeRaR1� e, where e � 1

2�1ÿ 1�����������
1ÿC 2

12

p �. As can be

Fig. 1. Examples of Lagrangian correlations meeting the consistency requirements of ®rst-order stochastic processes.
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seen from Eqs. (29) and (30), putting a � 0:5 leads to R11 � R22, whereas putting a � 0 leads
to the same result as a � 1 except that t1 and t2 are inversed. In the hereafter presented
calculations, the simplest case a = 1 was considered, since this value leads to the simplest form
of the matrices A,fRij g and H, and to physically reasonable shapes of the correlations (see Fig.
1). In this case, the correlation tensor takes the simple form:

�
Rij�t�

	 �
8<:
ÿ
1ÿ C 2

12

�
eÿt=t1 � C 2

12e
ÿt=t2 C12e

ÿt=t2 0
C12e

ÿt=t2 eÿt=t2 0
0 0 eÿt=t3

9=; �31�

Integration of the proposed expressions of Rij�t� leads to the relationships between t1,t2, and
the Lagrangian integral time scales T11, T22 �t3 being obviously equal to T33):

t1 � 1

1ÿ C 2
12

ÿ
T11 ÿ C 2

12T22

�
t2 � T22 �32�

which can be veri®ed to yield
�1
0 Rii�t� dt � Tii . The autocorrelation matrix form suggested in

Eq. (31) corresponds to the following matrix H:

H�Dt� �

8>>><>>>:
eÿDt=t1

C12

m
�eÿDt=t1 ÿ eÿDt=t2 � 0

0 eÿDt=t2 0
0 0 eÿDt=t3

9>>>=>>>; �33�

which can be veri®ed to actually be an exponential matrix, i.e., to satisfy the condition of Eq.
(19).
An example of the shape of the Lagrangian correlations R11,R22,R12 as a function of the

dimensionless time t=T11 is illustrated by Fig. 1 in the case C12 � ÿ0:5,T22=T11 � 0:7. Although
the proposed formulation does not allow the correlation functions to include negative loops, it
is believed that such a minor drawback should be preferred rather than using correlations
which are not consistent with the time series adopted to generate the ¯uid velocity ¯uctuations.
The problem of the behaviour of the proposed correlations at small t (non-vanishing slope at
the origin) will be examined in testing the time step in¯uence on the dispersion results
presented in the next section.
The same approach is used in order to obtain consistent and physically reasonable

expressions of the two-point velocity correlations which are needed for the spatial transfer
from point xp�t� to point xf�t�, according to Eq. (11). The resulting form of matrix K is
therefore:

K�Dr� �

8>>><>>>:
eÿDr=l1

C12

m
�eÿDr=l1 ÿ eÿDr=l2 � 0

0 eÿDr=l2 0
0 0 eÿDr=l3

9>>>=>>>; �34�
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where l2,l2, are connected to the ¯uid integral length scales Lii by relationships similar to Eq.
(32), and l3 � L33.
The way the ¯uid integral scales Tii and Lii are evaluated will be described in the next

section, where validation tests are carried out in two kinds of turbulent ¯ows, namely a
uniform ¯ow and a horizontal linear shear ¯ow.

4. Code validation in uniform and shear ¯ow

Before studying the particle dispersion in a vertical shear ¯ow, the capability of the present
numerical Lagrangian simulation is ®rst tested, in Section 4.1, through comparison with the
experiments of Snyder and Lumley (1971) [hereafter denoted SL], performed in a nearly
homogeneous isotropic turbulence. In Section 4.2, a second validation test is proposed against
the recent experimental results of Huang and Stock (1997) [HS] in a horizontal linear shear
¯ow.

4.1. Simulation of the experiments of Snyder and Lumley (1971)

SL measured the transverse particle dispersion in the grid-generated turbulence of a vertical
wind tunnel. The particle densities and diameters, as well as terminal relative velocities and
relaxation times, are given in Table 1.
Particles were injected at x1=M � 20, where x1 is the distance from the grid, and M � 2:54

cm is the grid spacing. Single particle trajectories were photographically tracked from
x1=M � 68±168. The mean velocity of the upward turbulent air ¯ow,Vf1 , was set at 6.55 m/s,
and the transverse mean velocities were zero. The turbulent air ¯ow was nearly isotropic
(therefore C12 � 0), and obeyed the following experimental decay laws:

Vf1

2

vf1
2
� 42:4

�
x1

M
ÿ 16

�
�35�

and

Table 1
Particles used in Snyder and Lumley's experiments (Snyder and Lumley, 1971)

Hollow glass Corn pollen Glass Copper

Diameter d (mm) 46.5 87.0 87.0 46.5
Density rp (kg/m3) 260 1000 2500 8900
Terminal relative velocity Vt (m/s) 0.0167 0.198 0.442 0.483
Relaxation time tp (s) at relative velocity Vt 0.0017 0.0202 0.0451 0.0492

Reynolds number at relative velocity Vt 0.052 1.15 2.56 1.50
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Vf1

2

vf2
2
� Vf1

2

vf3
2
� 39:4

�
x1

M
ÿ 12

�
�36�

For the purpose of numerical simulation, the ¯uid Lagrangian time scale TL�� Tii 8i� is
supposed to obey, at any point downstream of the grid, the following general relationship,
where u 0 2 is de®ned by u 0 2 � 1

3�v2f1 � v2f2 � v2f3�, and where e is the turbulent kinetic energy
dissipation rate:

TL � CT
u 0 2

e
�37�

In case of the present nearly isotropic ¯ow, the constant CT is taken equal to 0.235 (according
to Hinze, 1975, pp. 397, 426: CT � 2=C with C � 8:5), as was done, among others, by Lu et al.
(1993) or Huilier et al. (1996). The dissipation rate e can be obtained from turbulent kinetic
energy conservation equation, which leads to:

e � ÿdk

dt
� ÿVf1

dk

dx1
� Vf1

3

2M

 
1

42:4

�
x1

M
ÿ 16

�ÿ2
� 1

39:4

�
x1

M
ÿ 12

�ÿ2!
�38�

where k � �3=2�u 0 2 is the turbulent kinetic energy.
As already mentioned, the length scales Lii to be used for the spatial transfer according to

Eq. (11) may be assumed to be equal to the Eulerian length scales, and therefore to obey the
following general relationship, which was used by many workers (see Berlemont et al., 1990,
Zhou and Leschziner, 1991, Shirolkar et al., 1996) due to lack of any more satisfactory
expression:

Lii � CLiTii

�����
v2f i

q
�39�

where Tii is to be replaced here by TL as given by (37). In order to apply such expressions of
the length scales in case of SL's experiments, we have to take into account that the ratio
between longitudinal and lateral Eulerian length scales was found by these authors to be about
2.5 (instead of the theoretical value of 2 in perfectly isotropic turbulence), and that the
longitudinal length scale was assessed at about 3 to 4 cm. From such requirements, the
following values of coe�cients CLi are chosen here: CL1 � 5; CL2 � CL3 � 2. This choice leads
to a longitudinal length scale which is close to the experimental value, contrary to some other
workers who simulated SL's experiments by using CL1 � 2:5, thus largely underestimating the
length scales (Lu et al., 1993, Shirolkar and McQuay, 1998).
The particle dispersion can be quanti®ed by computing, at each time step, the mean square

displacements of the particles by:

hx2
i i � h

ÿ
xpi ÿ hxpii

�2i � hx2
pi
i ÿ hxpii2, �40�

where h�i denotes ensemble average. Numerical simulations have been carried out with a time
step Dt � 0:2 ms for the hollow glass particles, and Dt � 1 ms for the heavier particles. Such
values are much lower than both the particle relaxation time and the dissipation time scale of
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the turbulence (10 to 30 ms). Averaging has been performed over 20,000 particle trajectories, a
su�ciently large number for a fair statistical convergence to be obtained, as shown by Table 2,
where transverse dispersion predictions using 10,000, 20,000 and 40,000 particles are compared.
Comparisons between SL's results and the numerical predictions are illustrated by Fig. 2,

which is a plot of the mean square displacement in the x2-direction, as a function of the time t
elapsed from the ®rst camera station, located at x1=M � 68 . In this ®gure, numerical results
are represented by lines, while symbols are for the experimental data. Agreement between
computed and experimental particle transverse dispersions can be seen to be satisfactory,
although signi®cant di�erences are observed for heavy particles, whose long-time dispersion is
somewhat overestimated, as well as for pollen particles, whose dispersion is underpredicted. In
case of glass and copper particles, such discrepancies, which have also been observed by other
workers, like Chen and Crowe (1984), Lu et al. (1993), or Huilier et al. (1996), might be due to
the approximations used in the spatial correlations, whose in¯uence is more crucial for heavy
particles owing to their signi®cant drift velocity. Concerning the pollen particles, the
discrepancy (also observed by Shirolkar and McQuay, 1998) may possibly be explained by an
underestimation of the drag force, which is computed using the assumption that particles are
perfectly spherical.
The discrimination levels used by SL in their experiments (the maximum displacement

between two adjacent cameras was 16.5 mm for the hollow glass beads and 15.2 mm for the
other particles) as well as the limits of the ®eld size (which was 20.32 cm wide) were taken into
account in the results presented in Fig. 2. However, the in¯uence of such limitations was found
to be negligible except for the hollow glass beads, whose predicted dispersion is reduced (by
about 5%) compared to the dispersion obtained without any rejection, the rejection rate being
about 1.8%.
Due to the adopted approach and to the corresponding consistency requirements mentioned

in the previous section, the correlations used herein are known to exhibit a non-physical
behaviour at small time lags, i.e., the parabolic portion near the origin is not represented. That
is the reason why the in¯uence of the time step had to be examined, particularly for the hollow
glass particles, whose small relaxation time requires a small time step. Results illustrated by
Table 3 show that the time step in¯uence is not signi®cant, which is presumably a positive
consequence of ensuring consistency between the stochastic process and the prescribed

Table 2

E�ect of the number of simulated particle trajectories on the transverse dispersion hx 2
2i after 500 ms

Number of particle trajectories

10,000 20,000 40,000

hx 2
2i (cm2) Hollow glass

Run 1 4.912 4.972 4.969
Run 2 4.973 4.996 4.983
hx 2

2i (cm2) Copper
Run 1 1.693 1.714 1.711

Run 2 1.715 1.689 1.702
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correlations. The advantage of the present method is that, even if the short time e�ects are not
simulated as accurately as possible, the cumulative e�ects of all the previous time steps are
correctly taken into account, thus preserving the representation of the coherent nature of the
turbulence.
In order to examine the e�ect of gravity on particle dispersion, the mean square

displacements of particles in the gravity direction have been studied. As can be seen in Fig. 3,
which displays the dispersion ratio hx2

1i=hx2
2i, the streamwise particle dispersion is signi®cantly

larger than the transverse one, except for hollow glass particles. This means that particles

Fig. 2. Particle transverse dispersion in an upward uniform ¯ow. Symbols: Experiments of Snyder and Lumley
(1971). Lines: present predictions.

Table 3

In¯uence of the time step on the transverse dispersion hx 2
2i after 500 ms

hx 2
2i (cm2)

Run 1 Run 2

Hollow glass
Dt � 0:2 ms 4.972 4.983
Dt � 0:4 ms 4.969 4.979

Dt � 1:0 ms 4.978 4.975
Copper
Dt � 0:5 ms 1.702 1.713
Dt � 1:0 ms 1.714 1.689

Dt � 2:0 ms 1.692 1.714
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disperse faster in the gravity direction, as predicted by previous studies (Reeks, 1977; Pismen
and Nir, 1978). Such an anisotropy is due to the well-known continuity e�ect, a consequence
of the drift velocity, which is here a function of the x1-coordinate. As a result, this gravity
induced anisotropy is increasing with increasing particle inertia, as shown by Fig. 3. It must be
noticed that the particle dispersions in both transverse directions were found to be very close
to one another, as could be expected since there is no preferential direction in the horizontal
plane.
So far, the numerical code has been shown to yield satisfactory predictions of the behaviour

of solid particles suspended in a turbulent uniform ¯ow. In order to provide a ®rst illustration
of the e�ect of ¯uid shear on particle dispersion, calculations were also performed using the
conditions of Huang and Stock's experiments, as described hereafter.

4.2. Simulation of the experiments of Huang and Stock (1997)

HS measured the particle dispersion in both transverse directions in a nearly homogeneous
horizontal shear ¯ow, created in a wind tunnel by means of a shear generator made up of
parallel plates. The shear was in the vertical upwards direction, denoted here by x2. The test
section was about 0.36 m high and 2.4 m long. The mean velocity at the mid height of the test
section was Vf10

� 5:925 m/s, and the shear rate was w � 10:69 sÿ1. The measured ¯ow

parameters were:
������
v2f1

q
10:23 m/s,

������
v2f2

q
10:21 m/s,

������
v2f3

q
10:23 m/s, and vf1vf21ÿ 0:021 m2/s2.

From these values, the one-point correlation coe�cient used in the present simulation is
C121ÿ 0:4. The turbulent kinetic energy dissipation rate e can no longer be computed by

Fig. 3. Predicted streamwise-to-transverse dispersion ratio in the conditions of the experiments of Snyder and
Lumley (1971).
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Eq. (38), since we are concerned here with a non-decaying homogeneous turbulence. In this
case, the turbulent kinetic energy equation leads to the following equilibrium condition
between the dissipation and the turbulence production by the mean shear:

e � ÿvf1vf2

dVf1

dx2
� ÿwC12

������
v2f1

q ������
v2f2

q
10:23 m2=s3 �41�

Two types of glass beads, of density 2500 kg/m3, diameter 24 and 51 mm, were injected in the
centre of the section located at x1 � ÿ0:0792 m, and their dispersions hx2

2i, hx2
3i were deduced

from concentration pro®les at three sections located between x1 � 1:55 m and x1 � 2:11 m.
The Lagrangian time scales of the ¯uid can be inferred from heat di�usion experiments

performed by the authors, from which we can estimate T22170 ms, and T331110 ms.
Assuming that such time scales obey the general expression similar to (37), namely:

Tii � CT

v2f i
e

�42�

we are led to the approximate value of the constant CT10:45.
The length scales Lii are still supposed to obey Eq. (39); however, contrary to the previous

case, the coe�cients CL2 and CL3 have to be di�erent in order to account for the anisotropic
nature of the ¯ow. As shown by Champagne et al. (1970) who determined the spatial integral
length scales in such a weak shear ¯ow, L22 is about 1.6 times L33, which means that we
should have, according to the above mentioned values of the r.m.s. velocities, CL212CL3.

Fig. 4. Particle transverse dispersion (in the direction of shear) in a horizontal homogeneous shear ¯ow. Symbols:
Experiments of Huang and Stock (1997). Lines: present predictions.
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Moreover, in accordance with the longitudinal Eulerian time scale measured by HS, which was
about 15 ms, the spatial longitudinal time scale should be L1119 cm, a value that can be
obtained by choosing CL114. This is what we did in the simulations whose results are
presented here, the ®nal values of the constants being: CL1 � CL2 � 4, CL3 � 2.
Taking into account the particle relaxation time values, which are about 4 and 20 ms for the

24 and 51 mm particles, respectively, the time steps used for the simulation were Dt � 0:5 and 2
ms, respectively. From preliminary tests, no signi®cant in¯uence of Dt has been observed in
performing calculations with four values of the time step, namely 0.2, 0.5, 1 and 2 ms, for each
kind of particles.
Fig. 4 and Fig. 5 illustrate the comparison between our numerical predictions and the

experimental data of HS, concerning the particle dispersion in direction x2 and x3, respectively.
Except for the dispersion of the 24 mm particles in the direction of shear (direction x2, Fig. 4),
the numerical results can be seen to be in very good agreement with the experimental ®ndings
of HS. Taking the slope of the lines in Figs. 4 and 5, we obtain dispersion coe�cients which
are in qualitative agreement with the measurements of HS, even though the numerically
predicted dispersion coe�cient in case of the 51 mm particles in the direction perpendicular to
the shear is signi®cantly overestimated (Fig. 5). Concerning the observed discrepancy in Fig. 4
for the 24 mm particles, it should be mentioned that recent numerical results by Jiang et al.
(1998), who simulated the same problem using the random Fourier modes method, are very
similar to ours. In particular, the dispersion of the 24 mm particles in the direction of shear was
also underestimated, even though the predicted dispersion coe�cient, derived from the slope of
the dispersion curves, is close to the experimental value. Moreover, in accordance with the

Fig. 5. Particle transverse dispersion (in the direction perpendicular to shear) in a horizontal homogeneous shear
¯ow. Symbols: Experiments of Huang and Stock (1997). Lines: present predictions.
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present predictions, it was also found by Jiang et al. (1998) that the dispersion di�erence
between the 24 and 51 mm particles is larger in the x3 direction. Actually, the reported values
of hx2

2i by HS for the 24 mm particles seem to be surprisingly high, and it might therefore be
asked whether some change in the upstream conditions could have caused any shift in the
measurements.
The displayed numerical results have been obtained by including the lift force due to the

mean ¯uid velocity gradient, as described in Section 2. Although it was found that the
in¯uence of lift does not exceed 3%, this transverse force was nevertheless taken into account
for the investigation of particle dispersion in a vertical homogeneous shear ¯ow, whose results
are presented in the following section.

5. Particle dispersion predictions: results and discussion

In this section, the ¯uctuating motion of spherical particles suspended in an upward vertical
turbulent air ¯ow is investigated. The imposed mean velocity Vf1 obeys Eq. (2). The numerical
investigation is carried out for the same four kinds of particles used by SL. Particles are
supposed to be injected into the ¯ow with an initial velocity equal to the local ¯uid velocity, so
that the mean relative velocity is initially zero, and tends to the particle free fall velocity (or
terminal velocity) for long dispersion time. Predictions concerning the e�ect of the mean ¯uid
velocity gradient upon the particle dispersion and turbulent intensity are presented in Section
5.1. Results are further discussed in Section 5.2, with relevance to the analysis of Liljegren
(1993).

5.1. Particle dispersion in a vertical homogeneous shear ¯ow

Turbulent quantities of the vertical ¯ow considered here are taken from the measurements
obtained by Champagne et al. (1970) in a nearly homogeneous turbulent shear ¯ow generated
in a wind-tunnel. The centre-line mean velocity Vf0 was set at 12.4 m/s, and the mean shear
rate was w � 12:9 sÿ1. The intensity of the axial velocity ¯uctuation was perceptibly greater
than of the other two components. The following values of turbulent intensities were measured
in the working section:������

v2f1

q
Vf10

� 0:018;

������
v2f2

q
Vf10

� 0:013;

������
v2f3

q
Vf10

� 0:014; �43�

and the one-point correlation coe�cient was

C12 � vf1vf2������
v2f1

q ������
v2f2

q � ÿ0:5 �44�

In order to simulate the particle dispersion in such a shear ¯ow, the Lagrangian time scales Tii

and the integral length scales Lii are expressed by means of Eqs. (42) and (39), respectively, as
was done for the second test case in the previous section, the dissipation e being still computed
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by Eq. (41). The coe�cients CT and CLi were set at the same values, namely: CT � 0:45,
CL1 � CL2 � 4, CL3 � 2, which have been proven to yield satisfactory results in the horizontal
shear ¯ow of HS.
Calculations have been performed using the same particle densities and diameters as in

Snyder and Lumley's experiments, under upward vertical air ¯ow conditions. Particles are
supposed to be injected at x1 � x2 � 0 with velocity Vf0 . The e�ect of shear on particle
dispersion is investigated by varying the mean shear rate from 4 to 20 sÿ1 (recalling that the
actual shear rate in the experiments of Champagne et al. (1970) was 12.9 sÿ1), and by
examining the results about dispersions hxixji, as well as particle velocity variances and
dispersion coe�cients Dij, which are de®ned by

Dij�t� � 1

2

d

dt
hxixji �45�

and whose long-time values are estimated herein by

Dij111

2

hxixjit1 ÿ hxixjit1ÿDt
Dt

�46�

where t1 � 1500 ms (see below) and Dt � 20 ms.
Owing to the proportionality between the turbulent kinetic energy dissipation rate and the

velocity gradient, the resulting integral scales are inversely proportional to the shear rate. As a
consequence, the particle Stokes number, de®ned here as St � tp=T11, is proportional to the
velocity gradient w, and this has to be taken into account in discussing the numerical
predictions. Fig. 6 displays the Stokes number as a function of the shear rate for each kind of
particles.
The duration t1 of particle tracking was chosen in order to ensure that trajectories are

computed during a su�ciently long time compared to the particle relaxation time and to the

Fig. 6. Particle Stokes number as a function of the shear rate in the simulated vertical homogeneous shear ¯ow.
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turbulence integral time scale. Here, the largest particle relaxation time is about 50 ms, whereas
the Lagrangian integral time scale T11 goes from 62 ms (for w � 20 sÿ1) to 310 ms (for w � 4
sÿ1). It was therefore decided to adopt t1 � 1500 ms. The time step, which has to be su�ciently
small compared to tp and T11, was 0.2 ms for the hollow glass beads �tp � 1:7 ms) and 2 ms
for the other types of particles (whose relaxation time exceeds 20 ms). In each case, particle
statistics was computed from 20,000 particle trajectories.
The general behaviour of the mean square displacements hx2

i i in such a shear ¯ow is
illustrated by Fig. 7, which displays an example of computed dispersions as a function of time
for the lightest and the heaviest particles considered here. The main objective of this plot is to
make clear the characteristic parabolic behaviour of the streamwise mean square displacement,
due to both the growth of hx2

2i and the presence of the ¯uid velocity gradient, as pointed out
by Liljegren (1993). There is therefore no constant asymptotic value of the dispersion
coe�cient in the streamwise direction, contrary to the transverse directions where the mean
square displacements can be seen to vary linearly at su�ciently long time. The variance of the
streamwise velocity, which is nonstationary, will be discussed in the next subsection with
relevance to the theoretical work of Liljegren (1993). The in¯uence of the shear rate on the
streamwise mean square displacement at t1 � 1500 ms is depicted by Fig. 8 for the four kinds
of particles. Light particles are more a�ected by the shear than heavy particles. As could be
expected due to the very close values of their relaxation time, glass and copper particles exhibit
approximately the same dispersion characteristics whatever the mean ¯uid velocity gradient.
The particle dispersion in the transverse direction x2 and the long-time dispersion coe�cient

D22 are illustrated by Fig. 9 and Fig. 10, respectively. The transverse particle dispersion can be
seen to decrease with increasing shear rate, however, it must be recalled here that this is likely

Fig. 7. Examples of the behaviour of the particle mean square displacements in the vertical homogeneous shear ¯ow
�w � 14 sÿ1).
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to be an e�ect of the Stokes number change according to Fig. 6, which means that the e�ect of
particle inertia increases with increasing ¯uid shear rate. The direct in¯uence of the velocity
gradient can be made more explicit in examining the dispersion results at the same Stokes
number: this can be done for the pollen, glass and copper particles in the range St10:15±0:35
(see Fig. 6). For example, for St � 0:3, which corresponds w17:5 for the copper beads and
w118 for the corn pollen, the comparison shows that the presence of shear causes the pollen
particles to disperse less than the copper particles, contrary to what would be expected in
isotropic turbulence where crossing-trajectories e�ects are known to reduce the particle
dispersion of heavier particles, due to their larger drift velocity (which is here the free fall
velocity). It can be concluded that the e�ect of the ¯uid velocity gradient in such a vertical
¯ow is to slightly reduce the transverse particle dispersion in the direction of shear. The ratio

Fig. 8. Predicted streamwise dispersion, at t1 � 1500 ms, as a function of the shear rate in the vertical homogeneous
shear ¯ow.

Fig. 9. Predicted transverse dispersion, at t1 � 1500 ms, as a function of the shear rate.
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of particle to ¯uid velocity variances in the same x2-direction is plotted as a function of the
shear rate in Fig. 11, which shows that the transverse velocity variance of light particles is not
signi®cantly modi®ed by the presence of the velocity gradient, contrary to heavier particles. A
comparison of particle velocity variances at a given value of the Stokes number shows that the
direct in¯uence of the shear on the particle transverse turbulent intensity is not signi®cant, the
observed decrease being mostly an e�ect of the Stokes number increase. Comparing the
in¯uence of the velocity gradient on the dispersion coe�cient and on the particle turbulent
intensity, it may be deduced that the e�ect of shear is to diminish the particle integral time
scale in this transverse direction. The same conclusions may be drawn concerning the results in

Fig. 10. Predicted long-time dispersion coe�cient in the transverse direction, as a function of the shear rate.

Fig. 11. Asymptotic value of the particle-to-¯uid velocity variance ratio in the transverse direction.
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the x3-direction, where the only signi®cant di�erence lies in the behaviour of the hollow glass
particles, which are found to disperse faster than in the x2-direction.
It is interesting to notice that a small mean transverse deviation hxp2i exists, except for the

lightest particles, as illustrated by Fig. 12. Comparison between the predicted mean
displacements hxp2i with and without taking the shear lift force into account shows that such
an e�ect, which makes particles to deviate towards the larger velocity side, is largely reinforced
by the lift force (which may be recalled to not signi®cantly alter the dispersion properties
presented herein, as already mentioned). However, the lateral deviation can be seen to exist for
the heavier particles even without any e�ect of the lift force. Such a transverse deviation, which
may possibly be due to non-linear drag e�ects, is not explained as yet, and will be subject to
further investigations.
Results concerning the cross-dispersion are displayed by Fig. 13. Just after particle injection,

and during a period of the order of the relaxation time, the displacement cross-correlation
hx1x2i (calculated by hx1x2i � hxp1xp2i ÿ hxp1ihxp2i� is negative, whatever the kind of particle
(even if this cannot be seen in Fig. 13 for the hollow glass particles due to their very short
relaxation time). The subsequent evolution towards large positive values is all the more rapid
as the velocity gradient is higher. For long dispersion time, hx1x2i exhibits a parabolic
behaviour similar to the streamwise dispersion hx2

1i. This behaviour of the cross-dispersion
hx1x2i is in accordance with the theory of turbulent di�usion of ¯uid particles in homogeneous
shear ¯ow, which predicts hx1x2i1vf1vf2t

2 for short di�usion times (leading to initially negative
values of hx1x2i� and hx1x2i1wv2f2T22t

2 for long di�usion times, where w is the shear rate,
leading to the observed parabolic behaviour (see Squires and Eaton, 1991). Since this
behaviour physically results from the random nature of the particle position, which causes it to
sample higher (if x2 > 0� or lower (if x2 < 0� mean ¯uid velocities, it could be expected that
the solid particles behave in a qualitative similar manner.

Fig. 12. Mean transverse deviation hx p2 i, at t1 � 1500 ms, as a function of the shear rate.
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The progress in particle dispersion in a shear ¯ow is depicted by Fig. 14 and Fig. 15, which
illustrate the time evolution of the shape of the particle cloud for hollow glass beads and
copper beads, respectively, with a shear rate w � 14 sÿ1: the locations of 200 particles have
been plotted at three successive values of the time t elapsed from injection. In both cases, the
inclination of the particle cloud is changing from t � 150 ms, where hx1x2i10 (or perceptibly
less than zero for the copper particles), to t � t1 � 1500 ms, where hx1x2i > 0, according to the
positive mean slope of the cloud (watch the x1-axis scale change for t � 1500 ms). Moreover,
the appearance of the mean transverse deviation, which is about 1 cm according to Fig. 12, can
be discerned in case of heavy particles (Fig. 15), whereas Fig. 14 con®rms that such a lateral
deviation does not exist for very light particles.

5.2. Discussion

Liljegren (1993) investigated the e�ect of shear on the velocity variance of the particles,
under the assumption of small particle Reynolds number (linear drag). In this case, the
transverse velocity ¯uctuations of particles, which decrease with increasing Stokes number,
were theoretically shown not to depend on the ¯uid velocity gradient. This is con®rmed by the
numerical results described above, recalling that the turbulent intensity decrease in Fig. 11 is
due to the diminution of the ¯uid Lagrangian time scale with increasing shear, which makes
the particle Stokes number to increase with the mean shear rate.
In order to compare the predictions about the streamwise particle motion with the

theoretical analysis of Liljegren (1993), it is convenient to introduce the relative streamwise
velocity between a particle and the mean ¯uid velocity at the current particle position:

Wp1 � Vp1 ÿ
�
Vf10
� wxp2

�
�47�

Fig. 13. Predicted displacement cross-correlation as a function of time in the initial stage of dispersion.
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which is stationary in variance (denoted hereafter by w2
p1
� as are the transverse components of

the particle velocity. At the low Stokes number limit, Liljegren (1993) showed that the particle
relative velocity variance obeys the following relationship:

w2
p1

v2f1

ÿ v2p2

v2f2

� 2wtp
jvf1vf2 j
v2f1

�48�

Fig. 14. Particle clouds at t � 150, 600 and 1500 ms (hollow glass particles, w � 14 sÿ1).
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which is displayed by the lines in Fig. 16, and compared to our numerical predictions. A good
agreement is obtained for the hollow glass particles, which satisfy the condition of small Stokes
number. For the heavier particles (whose Reynolds number exceeds unity) the computed values
are still in qualitative agreement with the theoretical ones, however it can be seen that the
di�erence �w2

p1
=v2f1� ÿ �v2p2=v2f2� tends to a constant value for the glass and copper particles as

soon as the velocity gradient exceeds about 10, a range corresponding to Stokes number which
are beyond the validity limit of Liljegren's analysis.
The observed phenomena are therefore in accordance with the conclusions of the theoretical

Fig. 15. Particle clouds at t � 150, 600 and 1500 ms (copper particles, w � 14 sÿ1).
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analysis of Liljegren (1993) for low particle Stokes numbers. As shown by Fig. 13, the e�ect of
the ¯uid Reynolds stress is prevailing at short dispersion time (compared to tp� and low shear
rate, leading to negative values of hx1x2i. After this initial period, the cross-dispersion is
positive, meaning that, on average, the x1-coordinate of a particle located at x2 > 0 exceeds the
mean value x1, and inversely for a particle at location x2 < 0. This can be explained by
considering the changes in the ¯uid velocity encountered by particles during their ¯uctuating
motion. In the presence of shear, and owing to their transverse random walk, particles undergo
¯uid velocity di�erences which are not only due to the ¯uid turbulent ¯uctuations but also to
the variations in the mean ¯uid velocity, which is depending on the instantaneous location of
the particle along the x2-direction. Therefore, particles tend to have a larger streamwise
displacement, i.e., dispersion, relative to particles moving in a uniform turbulent ¯ow. As
pointed out by Liljegren (1993), such a mechanism can explain some experimental results
reported in the literature. Among others, Tsuji and Morikawa (1982) measured such large
streamwise particle velocity ¯uctuations in a pipe ¯ow, and Rogers and Eaton (1990) reported
similar results in a boundary layer.

6. Conclusion

In order to analyse the e�ects of a mean ¯uid velocity gradient on the behaviour of
suspended particles in a turbulent gas ¯ow, an anisotropic Lagrangian tracking technique,
based on the approach proposed by Burry and Bergeles (1993), was used. Emphasis was put on
the choice of consistent correlation matrices with respect to the ®rst-order time-series used to
determine the ¯uid velocity ¯uctuations. Numerically predicted transverse particle dispersions
have been satisfactorily confronted to Snyder and Lumley's experimental results in case of

Fig. 16. Comparison between the numerical predictions and the theoretical result of Liljegren (1993) concerning the

variance of the streamwise relative velocity.
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uniform ¯ow, as well as to Huang and Stock's measurements in a horizontal homogeneous
shear ¯ow. Finally, the numerical simulation was used for the prediction of particle dispersion
in a vertical upward turbulent air ¯ow, in taking the in¯uence of gravity into account.
Original results have been obtained about the ¯uctuating and mean motion of particles in

the presence of a uniform mean velocity gradient. The variance of the streamwise particle
relative velocity has been found to increase above the level predicted without shear, in
accordance with the theoretical analysis of Liljegren (1993). Except at low shear rate or short
dispersion time, the main mechanism by which the streamwise dispersion is increased is
through the random interaction of the particles with the mean ¯uid velocity gradient, as has
been shown by examining the cross-dispersion results. The transverse particle dispersion has
been found to be una�ected by the shear, as predicted by Liljegren (1993), in case of small
particle Reynolds number. Although Liljegren's analysis was restricted to the ¯ows where the
particle Reynolds number is low enough for the drag force to obey the Stokes' law, the above
predictions show that her qualitative conclusions are con®rmed in case of non-linear drag.
The in¯uence of the lift force induced by the mean shear upon the particle dispersion has

been found to be negligible, except for the mean transverse deviation which has been observed
for heavier particles. However, such a lateral deviation of the particle cloud has been proved
not to be caused only by the lift force. Explanation of such a phenomena will require
additional investigations.
Further developments will include the improvement of the techniques based on the

simultaneous tracking of a solid particle and a ¯uid tracer, by adapting the method to more
elaborate stochastic processes, thus making it possible to use more realistic correlation
matrices. From the present results, which con®rm and extend Liljegren's qualitative analysis,
and which provide new information about the particle behaviour in a turbulent shear ¯ow, it
can be concluded that such phenomena should be taken into account in analyses of particulate
two-phase ¯ows.

Appendix A. Drag and lift coe�cient correlations

A.1. Correlation of Morsi and Alexander (1972)

CD � k1 � k2
Rep

� k3
Re2p

�A1�

The coe�cients k1, k2, k3, are listed in Table 4.

A.2. Correlation of Mei (1992)

RepR40:
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CL � 4:113
Re1=2w

Rep

" 
1ÿ 0:3314

�
Rew
2Rep

�1=2
!

exp

�
ÿ Rep

10

�
� 0:3314

�
Rew
2Rep

�1=2
#

�A2�

40 < RepR100:

CL � 0:1524
Rew
Rep

�A3�
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